In situ ultrathin silica layer formation on polyamide thin-film composite membrane surface for enhanced forward osmosis performances

نویسندگان

چکیده

Polyamide (PA) based thin-film composite (TFC) membranes experience a high degree of organic fouling due to their hydrophobic and rough membrane surfaces during forward osmosis (FO) process. In this study, an ultrathin silica layer was grown in situ on the PA surface enhance antifouling property TFC by silicification Surface characterization confirmed development surface. The superhydrophilic silica-deposited (contact angle 20°) with 3 h time (STFC-3h) displayed 53% higher water flux than pristine without significantly affecting selectivity. silica-modified FO also exhibited excellent stability when subjected long-term cross-flow shear stress rinsing using deionized (DI) water, including exposure salty, acidic basic solutions. Moreover, tests showed that STFC-3h lost only 4.2%, 9.1% 12.1% its initial bovine serum albumin (BSA), humic acid (HA) sodium alginate (SA), respectively, which are considerably lower compared where losses were 18.7%, 23.2% 37.2%, respectively. revealed recovery ratio (FRR) 99.6%, 96.9% 94.4% BSA, HA SA, after physical cleaning (91.4%, 88.7%, 81.2%, respectively). Overall, formation hydrophilic reported work shows membrane's could be improved diminishing

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High performance thin-film composite forward osmosis membrane.

Recent studies show that osmotically driven membrane processes may be a viable technology for desalination, water and wastewater treatment, and power generation. However, the absence of a membrane designed for such processes is a significant obstacle hindering further advancements of this technology. This work presents the development of a high performance thin-film composite membrane for forwa...

متن کامل

Preparation and Characterization of Thin-Film Composite Membrane with Nanowire-Modified Support for Forward Osmosis Process

Internal concentration polarization (ICP) in forward osmosis (FO) process is a characteristic problem for asymmetric thin-film composite (TFC) FO membrane which leads to lower water flux. To mitigate the ICP effect, modification of the substrates' properties has been one of the most effective methods. A new polyethersulfone-based ultrafiltration membrane with increased surface porosity and high...

متن کامل

Thin film nanocomposite forward osmosis membrane prepared by graphene oxide embedded PSf substrate

One of the limiting factors in good performance of forward osmosis (FO) membranes is the internal concentration polarization (ICP). To reduce ICP, thin film nanocomposite forward osmosis (TFN-FO) membranes were fabricated by adding different amounts of graphene oxide (GO) nanoplates (0-1 wt. %) to polymer matrix of polysulfone (PSf) substrate. The prepared nanocomposite membranes exhibited both...

متن کامل

Polyamide Forward Osmosis Membrane: Synthesis, Characterization and Its Performance for Humic Acid Removal

In this research, modification on the ultrafiltration (UF) membrane by synthesis of a thin layer of polyamide selective layer was designed for high performances of forward osmosis (FO) water treatment. Two monomers, m-Phenylenediamine (MPD) and Trimesoyl chloride (TMC) with different concentrations of MPD (2.0% w/v and 1.0% w/v) were reacted with TMC (0.15% w/v) for interfacial polymerization (...

متن کامل

Zwitterion Embedded Thin Film Composite Membrane for Oily Wastewater Treatment

The recent development in oil and gas industry increases the production and consumption of oil. The enormous amount of oily wastewater produced is urged to be treated to prevent humanity and environment from being threatened. Membrane technology is an appealing alternative for oily wastewater treatment due to its design simplicity, energy efficiency and environmentally benign approach. In this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Membrane Science

سال: 2021

ISSN: ['1873-3123', '0376-7388']

DOI: https://doi.org/10.1016/j.memsci.2020.118876